Likelihood Almost Free Inference Networks
نویسندگان
چکیده
Variational inference for latent variable models is prevalent in various machine learning problems, typically solved by maximizing the Evidence Lower Bound (ELBO) of the true data likelihood with respect to a variational distribution. However, freely enriching the family of variational distribution is challenging since the ELBO requires variational likelihood evaluations of the latent variables. In this paper, we propose a novel framework to enrich the variational family based on an alternative lower bound, by introducing auxiliary random variables to the variational distribution only. While offering a much richer family of complex variational distributions, the resulting inference network is likelihood almost free in the sense that only the latent variables require evaluations from simple likelihoods and samples from all the auxiliary variables are sufficient for maximum likelihood inference. We show that the proposed approach is essentially optimizing a probabilistic mixture of ELBOs, thus enriching modeling capacity and enhancing robustness. It outperforms state-of-the-art methods in our experiments on several density estimation tasks.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملGANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
We introduce a framework using Generative Adversarial Networks (GANs) for likelihood–free inference (LFI) and Approximate Bayesian Computation (ABC). Our approach addresses both the key problems in likelihood–free inference, namely how to compare distributions and how to efficiently explore the parameter space. Our framework allows one to use the simulator model as a black box and leverage the ...
متن کاملAnalysis of Biological Network Data Using Likelihood-free Inference Techniques
Biological Networks have received much attention in recent years, but statistical tools for network analysis are still in their infancy. In this paper we focus on Protein Interaction Networks (PINs) that typically comprise thousands of proteins and interactions. PINs are the result of long evolutionary histories. Here we adopt simple mathematical models that capture essentials of protein evolut...
متن کاملA Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
Inference for population genetics models is hindered by computationally intractable likelihoods. While this issue is tackled by likelihood-free methods, these approaches typically rely on handcrafted summary statistics of the data. In complex settings, designing and selecting suitable summary statistics is problematic and results are very sensitive to such choices. In this paper, we learn the f...
متن کاملAccurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.08352 شماره
صفحات -
تاریخ انتشار 2017